An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific

by I. Hoteit, D.T. Pham
Year:2004

Bibliography

An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific
I. Hoteit, and D.T. Pham
Journal of Marine Systems, 45, 173-188, 2004

Abstract

​The reduced-order extended Kalman (ROEK) filter has been introduced by Cane et al. (J. Geophys. Res. 101(1996) 599) as a means to reduce the cost of the extended Kalman filter. It essentially consists of projecting the dynamics of the model onto a low dimensional subspace obtained via an empirical orthogonal functions (EOF) analysis. However, the choice of the dimension of the reduced-state space (or the number of EOFs to be retained) remains a delicate question. Indeed, Cane et al. found that increasing the number of EOFs does not improve, and even sometimes worsens, the performance of the ROEK filter. We speculate that this is probably due to the optimal character of the EOF analysis that is optimal in a time-mean sense only. In this respect, we develop a simple efficient adaptive scheme to tune, according to the model mode, the dimension of the reduced-state space, which would be therefore variable in time. In a first application, twin experiments are conducted in a realistic setting of the Ocean Parallèlisè (OPA) model in the tropical Pacific. The observations are assumed to be synthetic altimeter data sampled according to the Topex/Poseidon mission features. The adaptive scheme is shown to improve the performance of the ROEK filter especially during model unstable periods.

DOI: 10.1016/j.jmarsys.2003.11.004

Keywords

Data Assimilation Eof Analysis Kalman Filter Ocean Modeling OPA Model ROEK Filter
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved