Atmospheric conditions and air quality assessment over NEOM, kingdom of Saudi Arabia

by H. P. Dasari, S. Desamsetti, S. Langodan, R. K. Karumuri, S. Singh, I. Hoteit
Article Year:2020 DOI: 10.1016/j.atmosenv.2020.117489

Abstract

NEOM is an under-development transnational city and economic zone spread over an area of 26,500 km2 along the northern Red Sea coast of the Kingdom Saudi Arabia, bordering Jordan and Egypt. This study analyzes the meteorological parameters and air pollution dispersion over the NEOM region, based on observations and air quality dispersion modeling. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate the fate of air pollutants. To drive HYSPLIT, high-resolution (660 m) meteorological data were generated by downscaling the National Centers for Environmental Prediction (NCEP) Global Forecasting System analysis using the Weather Research and Forecasting (WRF) model. The air pollutant emission factors (AP-42) emission inventory, from the United States Environmental Protection Agency, was used to initialize HYSPLIT. A continuous three-year dataset simulated by WRF–HYSPLIT was then analyzed to understand the spatial and temporal distributions of air pollutant concentrations in the NEOM region. Strong land and sea breezes, resulting from differential heating, dominate the diurnal dispersion and distribution of pollutants in the NEOM region. The spatial distributions of the concentrations of different pollutants, which show maximum concentrations in the spring and winter because of lower boundary layer heights. The predicted maximum concentrations of NOx (∼40 μg/m3), SO2 (∼25 μg/m3), CO (∼10 μg/m3), VOC (∼0.05 μg/m3), and PM (∼4 μg/m3) remain well within the national air quality standards recommended by the Saudi General Authority for Meteorology and Environment Protection and the Royal Commission. The estimated emissions analyzed by the model do not include background emissions (such as dust and vehicle pollution), as they are not available over this region, but only major industrial sources. Our analysis provides the information needed to understand the state of the air quality in the NEOM region, providing a fundamental contribution to the environmental impact assessment and planning in the region.
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved