Dynamically adaptive data-driven simulation of extreme hydrological flows

by P. K. Jain, K. Mandli, I. Hoteit, O. Knio, C. Dawson
Year:2018

Bibliography

Dynamically adaptive data-driven simulation of extreme hydrological flows
P. K. Jain, K. Mandli, I. Hoteit, O. Knio, and C. Dawson
Ocean Modelling, 122, 85-103, 2018

Abstract

​Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

DOI: 10.1016/j.ocemod.2017.12.004

Keywords

Data Assimilation Ensemble Kalman Filter Adaptive Mesh Refinement Tsunami Okada Model Shallow Water Equations Uncertainty Quantification
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved