On the generation and evolution of internal solitary waves in the southern Red Sea

by D. Guo, T. Akylas, P. Zhan, A. Kartadikaria, I. Hoteit
Year:2016

Bibliography

On the generation and evolution of internal solitary waves in the southern Red Sea
D. Guo, T. Akylas, P. Zhan, A. Kartadikaria, and I. Hoteit
Journal of Geophysical Research, Volume 121, Issue 12, Pages 8566–8584, 2016

Abstract

​Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0°N and 16.5°N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though, as the observed generation sites are far away (50 km) from the shelf break and tidal currents are considered relatively weak in the Red Sea. Upon closer examination of the tide properties in the Red Sea and the unique geometry of the basin, it is argued that the steep bathymetry and a relatively strong tidal current in the southern Red Sea provide favorable conditions for the generation of ISWs. To test this hypothesis and further explore the evolution of ISWs in the basin, 2-D numerical simulations with the nonhydrostatic MIT general circulation model (MITgcm) were conducted. The results are consistent with the satellite observations in regard to the generation sites, peak amplitudes and the speeds of first-mode ISWs. Moreover, our simulations suggest that the generation process of ISWs in the southern Red Sea is similar to the tide-topography interaction mechanism seen in the South China Sea. Specifically, instead of ISWs arising in the immediate vicinity of the shelf break via a hydraulic lee wave mechanism, a broad, energetic internal tide is first generated, which subsequently travels away from the shelf break and eventually breaks down into ISWs. Sensitivity runs suggest that ISW generation may also be possible under summer stratification conditions, characterized by an intermediate water intrusion from the strait of Bab el Mandeb.

DOI: 10.1002/2016JC012221

Keywords

Generation Mechanism Internal Solitary Waves Numerical Simulation Red Sea SAR Image
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved